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Anomalous  Dispers ion Corrections Computed from Sel f -Consistent  
Field Relativist ic  Dirac-Slater  Wave Functions* 

BY Do~  T. CROMER 

University of California, Los Alamos Scientific Laboratory, Los Alamos, New Mexico, U.S.A. 

(Received 23 December 1963 and in revised form 8 October 1964) 

/L~omalous dispersion terms, Af' and Af", have been computed for elements number 10 through 98 
for five commonly used X-ray wavelengths. Oscillator strengths were calculated from self-consistent 
field relativistic Dirac wave functions which included in the potential Slater's approximate ex- 
change contribution and Latter's self-interaction term. 

Introduction 

In recent, years, as counter devices have come into 
common use, it has been routinely possible to measure 
the effects of anomalous dispersion in X-ray diffrac- 
tion experiments. The importance of this effect has 
been pointed out by Templeton (1955). Dauben & 
Templeton (1955) have published values of the 
anomalous dispersion corrections for most of the 
elements, as calculated by the method of Parratt  & 
Hempstead (1954). An extension of Dauben & Temple- 
ton's (1955) calculations is given in International 
Tables for X-Ray Crystallography (1962). These cal- 
culations require a knowledge of the oscillator 
strengths and the manner in which the photoelectric 
absorption coefficient varies with the wavelength of 
the incident X-ray. An attempt has bccn made to 
improve the previous calculations by using atomic 
wave functions to obtain the oscillator strengths. 

Initially, the Hartree wave functions recently 
computed by Boyd, Larson & Waber (1963) were 
used for calculation of the oscillator strengths. I t  
was soon clear that, for heavy elements in particular, 
wave functions obtained by the simple Hartree model 
were completely inadequate for this purpose. The 
method was then checked with wolfram and uranium 
relativistic wave functions which had been calculated 
by Cohen (1960), and the results were considerably 
improved. Then, relativistic wave functions, which 
had been computed by Liberman, Waber & Cromer 
(1965), became available for all atoms. These rela- 
tivistic wave functions include Slater's (1951, 1960) 
approximate exchange correction, and Latter's (1955) 
self-interaction term; hence we call them Dirac-Slater 
(DS) wave functions. The final set of oscillator 
strengths and dispersion terms in this paper was 
obtained from these DS wave functions. 

* Work performed under the auspices of the U.S. Atomic 
Energy Commission. 

Theory  

The theoretical treatment as given by James (1948) 
will be summarized. The total atomic scattering 
factor, f, is in general complex and is given by 

f =fo+ Af' + i / i f"  (1) 

where f0 is the atomic scattering factor for radiation 
with frequency much higher than any absorption 
edge and / i f '  and Af" are the real and imaginary 
components of the anomalous dispersion. Neglecting 
damping, which is of importance only when the 
incident frequency is within about 10 -a of an absorp- 
tion edge (Parratt & Hempstead, 1954), Af' is given by 

~ f ~° c°2(dg/d09)~ d09 (2) / i f ' =  ~ W2- 
wk 09i 

where the summation is over all the absorption edges 
and 

09k--frequency of the absorption edge, 

09i -- incident frequency, 

(dg/d09)~= oscillator density of type k at fre- 
quency 09, 

(dg/dw)~dw=the number of virtual oscillators 
of type /c having frequencies 
between w and w + d09. 

The imaginary component, Af",  is given by 

Af"  = 1-7cw~ .Z, (dg/dw)~ i 
k 

(3) 

where the summation is again over all of the absorp- 
tion edges. 

If we knew the functions (dg/d09)k we could calculate 
Af'  and d f "  directly from equations (2) and (3). 
These functions are not known, although HSnl (1933) 
has made satisfactory calculations for the K electrons 
assuming them to be hydrogen-like. HSnl has also 
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T r a n s i t i o n  

1 o l  2P½ 
= 2  - ' +  

2p~ 
3p½ 
3p~ 
4p½ 
4p~ 
5p½ 
5p~ 
6P½ 
6p~ 

r 

H 

1409 

2898 

225 

452 

53 

106 

12 

25 

2 

3 

Table 1. Calculation of oscillator strengths for uranium 

g n  l i 
nTi '  × 104 

t t D  

972 

1924 

127 

338 

29 

81 

7 

19 

1 

3 

C o o r d i n a t e  m a t r i x  e l e m e n t  ( r )  
^ 

F . r 

D S  H HD D S  I I  

977 1 .358- -  2* 1-116- -  2 1.121 -- 2 0.1325 

1937 1-358--  2 1 .089- -  2 1 .094- -  2 0.1288 

126 5 .027- -  3 3 .736- -  3 3-727 -- 3 0.1139 

340 5.027 -- 3 4 . 2 9 4 - -  3 4 . 3 1 4 - -  3 0.1133 

29 2 .398- -  3 1.761 -- 3 1 .759- -  3 0.1100 

83 2 .398- -  3 2 . 0 7 5 - -  3 2 . 1 0 1 -  3 0 .1099 

7 1 .153- -  3 8 . 4 0 8 - -  4 8 -469- -  4 0-1091 

19 1 .153- -  3 9 .925- -  4 1 .012--  3 0.1091 

1 4 . 4 3 2 - -  4 3.361 --  4 3 . 5 4 1 -  4 0.1089 

3 4 . 4 3 2 - -  4 3.767 --  4 4 . 0 6 9 - -  4 0.1089 

W a v e l e n g t h  of t r a n s i t i o n  
^ 

HD D S  

A 0.1297 A 0.1302 A 

0-1247 0-1251 

0.1113 0.1116 

0.1104 0.1107 

0"1075 0.1078 

0.1073 0.1076 

0.1066 0-1069 } 

0.1066 0.1068 

0.1065 0.1066 

0.1064 0.1066 

O b s e r v e d  

0-1310 A 

0.1260 

0.1123 

0.1114 

0.1084 

0-1082 

0.1074 

2s½ -+ 2p½ 
2p~ 
3p½ 
3p~ 
4p½ 
4p~ 
5p½ 
5p~- 

6p½ 
6p~ 

156 

1924 

1260 

2611 

227 

456 

50 

100 

7 

15 

135 

2252 

1055 

866 

187 

190 

41 

43 

6 

6 

142 -- 6 .050- -  2 --  4 . 8 3 2 - -  2 -- 4 . 8 0 6 - -  2 23.7784 17-5177 16.4805 

2263 --  6 .050- -  2 --  5"505--  2 -- 5 .477- -  2 3.8523 2-7245 2.6842 

1082 3 .120- -  2 2 . 7 9 5 - -  2 2 .823- -  2 0.7824 0.7494 0.7462 0.7479 

899 3 .120- -  2 1 .744- -  2 1 .773- -  2 0.7552 0-7118 0.7081 0.7102 

190 1"188--  2 1 .060- -  2 1"063--  2 0 .6300 0.6074 0.6038 0.6042 

198 1 .188- -  2 7 .510- -  3 7 .642- -  3 0-6270 0.6007 0.5970 0.5988 

42 5"446--  3 4"830- -  3 4 . 8 6 6 - -  3 0.6018 0"5798 0.5756 0"5766 

45 5 . 4 4 6 - -  3 3-497 -- 3 3 .573- -  3 0-6017 0-5783 0.5741 0.5750 

7 2 . 0 7 6 - - 3  1 . 9 1 2 - - 3  2 . 0 1 2 - - 3  0.5968 0.5740 0.5696 ~ 0 .5706 

7 2 . 0 7 6 - -  3 1.321 --  3 1 .428- -  3 0.5968 0.5738 0-5694 ! 

2p½ -~ ls½ 

2s½ 
3s½ 
3d~ 
45½ 

4d~ 
5s½ 
5d~ 
6s½ 

6d~ 

7s½ 

--  1409 

- -  156 

161 

6945 

27 

946 

6 

165 

1 

2 

0 

- -  972 

- -  135 

136 

3865 

23 

636 

5 

112 

1 

1 

0 

--  977 1"358--  2 1 - I 1 6 - -  2 1 . 1 2 1 -  2 0.1325 0.1297 0-1302 

- - 1 3 7  - - 6 " 0 5 0 - - 2  - - 4 " 8 3 2 - - 2  - - 4 " 7 2 3 - - 2  23"7784 17"5177 16-4801 

142 1"145--  2 1"036--  2 1"060--  2 0"8238 0"8006 0"7990 0"8052 

3893 5 -074- -  2 3"704--  2 3"710--  2 0"7508 0"7188 0"7162 0"7200 

24 4 -175- -  3 3"825--  3 3 -888- -  3 0-6515 0-6343 0-6318 0-6355 

641 1"722 -- 2 ] ' 3 8 9 - -  2 1"392 -- 2 0-6351 0.6143 0"6117 0.6148 

6 1 .953- -  3 1"784--  3 1-816--  3 0"6189 0"6014 0.5982 0"6011 

116 7"079--  3 5.741 -- 3 5 .830- -  3 0.6146 0.5955 0.5922 0"5947 

1 8"220--  4 7 -714- -  4 8"078--  4 0"6125 0-5940 0"5906 

2 1 .488- -  3 1 .048--  3 1"581 -- 3 0-6116 0-5927 0.5892 0-5920 

0 2 " 2 3 0 - - 4  2"209- -  4 2 .622- -  4 0"6116 0.5927 0-5892 

2p~ -+ ls½ 

2~½ 
3Q 
3d-~- 

3d~ 

4Q 
4d2~ 
4d 5 

5s½ 
5d~ 
sg~ 
6s½ 

6d~ 

7s½ 

- -  1449 

- -  962 

132 

581 

5272 

23 

82 

734 

5 

14 

129 

1 

0 

0 

--  962 

- -  1126 

418 

515 

4704 

59 

70 

681 

13 

12 

116 

2 

0 

0 

--  969 1 .358- -  2 1 .089- -  2 1 .094--  2 0.1288 0.1247 0-1251 

-- 1132 --  6 .050- -  2 --  5"505--  2 --  5 .477- -  2 3.8523 2.7245 2-6842 

430 1 .145- -  2 2 . 0 9 6 - -  2 2 .125- -  2 1.0036 1.0648 1.0641 1.0671 

518 5 .074- -  2 4.851 -- 2 4 -856- -  2 0.8973 0.9249 0.9222 0.9224 

4737 5 .074- -  2 4 . 8 5 5 - -  2 4 " 8 6 3 - - 2  0.8901 0.9128 0.9099 0.9106 

59 4"175- -  3 6 .769- -  3 6 .784- -  3 0.7591 0.7895 0.7868 0.7704 

69 1 . 7 2 2 - - 2  1 .615- -  2 1 .606- -  2 0.7369 0.7588 0.7559 0.7566 

682 1 . 7 2 2 - - 2  1 . 6 8 2 - - 2  1 . 6 8 0 - - 2  0"7363 0.7569 0.7539 0-7546 

13 1 .953- -  3 3.077 -- 3 3 .084- -  3 0.7152 0.7392 0-7354 0.7361 

12 7 .079- -  3 6 . 5 3 3 - -  3 6 .568- -  3 0"7095 0.7303 0-7264 | 
120 7-079- -  3 6 .824- -  3 6 .903- -  3 0.7094 0.7300 0-7260 ~ 0 .7263 

3 8 . 2 2 0 - - 4  1 .323- -  3 1 .364- -  3 0.7067 0.7280 0-7239 0-7252 

0 1-488--  3 1 .189- -  3 1 .774- -  3 0.7054 0.7261 0.7219 0.7224 

0 2 -230- -  4 3 . 7 8 7 - - 4  4"421 - - 4  0.7054 0.7261 0.7219 

* T h e  n o t a t i o n  1 . 3 5 8 - - 2  m e a n s  1.358 × 10 -2. 
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applied his method to the L electrons but  the ap- 
proximation of hydrogen-like L electrons is not as 
good. Eisenlohr & Miiller (1954) have also applied 
gSnl ' s  method to the L electrons for several atoms. 

I t  is possible to relate the functions (dg/do))e to 
the photoelectric absorption coefficients and to the 
oscillator strengths and, with certain assumptions 
regarding the absorption coefficients, perform the in- 
tegration of equation (2). The total oscillator strength, 
gK, for the K continuum is given by 

gK = (dg/do))Kdw . (4) 
¢OK 

The atomic photoelectric absorption coefficient #(o)) 
is related to rig~do) by 

(rig~go)) = (mc/2az% 2) # ( o)) (5) 

where the symbols m, c and e have their usual meaning. 
Thus the oscillator density can be determined em- 
pirically from experimental values of #(o)). 

The variation of be(o)) for a particular edge is fairly 
well represented by the empirical formula 

{( o)k/o))~#(o)~) for o)> o)~ (6) 
b e ( o ) ) =  0 o) < o)k 

where o)e is the frequency of the edge, be (o)e) is the 
absorption coefficient at the edge, and n has a value 
of  t h e  o r d e r  of  3. U n f o r t u n a t c l y ,  n va r i e s ,  d e p e n d i n g  
on the particular edge involved, and is a function 
of atomic number. Uncertainty in the value of n 
is a serious defect in the present analysis; further, 
the assumption made in equation (6) is not strictly 
valid. 

If equations (5) and (6) are substituted into (4) 
we get 

l 
o o  

g~ = (mc/27e2e2)# (o)) do) 
eol,¢ 

gk - 2 7 e 2 e 2  # ( o ) ~ )  - -  do) 
O)k 

mC (.ok 
gk = 2~2e9. n - - 1  be(o)k) • (7) 

I f  n a n d  #(o)k)  a r e  d e t e r m i n e d  f r o m  e x p e r i m e n t ,  
ge c a n  be  c a l c u l a t e d  f r o m  (7). A n o t h e r  m e t h o d  of  
c a l c u l a t i n g  g~ wil l  be  d i s c u s s e d  be low.  

E q u a t i o n s  (5) a n d  (6) c a n  be  s u b s t i t u t e d  i n t o  (2) 
r e s u l t i n g  in  

_ m c  ~ ~ o)2do) 
Af~ 2~2e 2 #(o)k)o)/~ J (o)~_ o)2)o) . (8) 

W k  

Equation (8) has been integrated for the general 
ease by Par ra t t  & Hempstead (1954). These authors 
give expressions for Af~ for various values of n as 
functions of g~ and x, where x =  coi/o)e. 

Substitution of equations (5), (6) and (7) in (3) 
gives 

mc (o)~l n 
zJ f ;' = ~ o) i \ o)--~ / # ( o) k ) 

n - - 1  
Af'k" = 1~  ~ g~ (9) 

where x =  wi/ook as before. The dispersion terms for 
the whole atom are then obtained by using ap- 
propriate values of n and summing equations (8) 
and (9) over all the absorption edges. 

Experimental values of /z(o)) are not available for 
all atoms and it is difficult to determine #(o)) with 
accuracy. Thus there are few experimental values for 
oscillator strengths. I t  was therefore decided to 
calculate these quantities from the Hartree wave 
functions which have recently been computed. 

Table 2. Oscillator strengths for  wol fram and u r a n i u m  

Wolfram 

Edge H HD DS 

ls½ 1-04 1.24 1-24 
2s½ 0.88 1.13 1.10 
2P½ 0.89 1.25 1.24 
2p a- 2.31 2.33 2.31 
3s½ 0.83 1.01 1.01 
3P½ 1.15 1.36 1.33 
3p~ 3.15 3.05 2.98 
3d a- 4.67 4.37 4.25 
3d 5 6-57 6.54 6.35 
4s½ 0.86 0.78 0.81 
4P½ 0.89 0.88 0.91 
4p~ 2.43 2.39 2.44 
4d a 3.17 2.80 2.88 
4d~ 4.45 4.20 4.34 
41~ 10.76 10.62 10.60 
4]~ 14..~6 14.47 14.48 

HSni 

1.15 
1.35 

3.55 

H 

0.96 
0.64 
0-66 
2.18 
0.51 
0.78 
2.93 
3.97 
5.42 
0.60 
0.69 
2.61 
4-18 
5.78 

10.74 
14-13 

Uran ium 

t t D  

1.30 
1"04 
1.27 

2.20 
0.87 
1"22 
2.82 
3.59 
5.35 
0.67 
0"80 
2.49 
3"42 
5.29 

10"46 
13-98 

DS 

1.30 
1.03 

1.26 I 
2.18 [ 
0.87 
1.19 
2.74 
3.50 
5.25 
0.68 
0.82 
2.49 
2.43 
5.37 

10.46 
13.98 

HSnl 

1.12 
1.28 

3.22 
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The quantities g(/c, n) are the quantum mechanical 
analogues of the classical oscillator strengths. These 
quantities are proportional to the transition prob- 
abili ty of an electron going from state k to state n 
and thus are proportional to the coordinate matrix 
elements. The Thomas-Reiche-Kuhn sum rule states 
that  for a one-electron atom, 

~Y g(k, n) = 1, 
n 

and it can be shown that  for a many-electron atom 
the sum of the oscillator strengths is equal to Z, the 
atomic number. 

Wheeler & Bearden (1934) applied this sum rule 
to obtain the oscillator strengths without the extra- 
polation of the continuum of the hydrogen-like atom 
used in the HSnl method. Recall, from equation (4), 
that  gk is given by the integral of the oscillator 
density from wk to infinity, then this integral plus the 
transitions to all bound states is equal to unity by 
the sum rule. Therefore, for the K electrons, 

gg ---- 2 { 1 - - Z  g(K, m)} (10) 
m 

where g(K, m) is the oscillator strength of the virtual 
oscillator associated with the transition from the 
state K to the state m. The sum has to be taken 
over the relatively few occupied states. For other 
edges, the factor 2 in equation (10) is replaced by the 
multiplicity of the initial state. Wheeler & Bearden 
(1934) applied this method to the K edge only and to 
only a few atoms, there being few wave functions 
available at that  time. This method has apparently 
not been again used until the present. 

Bethe (1930) has given expressions for the oscillator 
strengths of hydrogen-like atoms for transitions 
nl--~ nT. These expressions depend on the energy 
difference and transition probability. The Hartree 
wave functions could be used directly with Bethe's 
formulae but it is in principle more accurate to correct 
the Hartree energy levels by applying spin and 
relativistic corrections. These corrections split the 
p, d, and f states into two levels characterized by 
the three quantum numbers nlj, with the new levels 
having multiplicities (2j + l) where j = 1 + ½. 

Bethe's formulae for the oscillator strengths can 
no longer be used after the relativity and spin corrcc- 
ti0ns have been applied. Dr James Young, of this 
Laboratory, has derived the expression for the oscilla- 
tor strength of the transition from the state nlj to 
the state nTj'. Young's formula is given below. 

gn'rf ,,z~ =]AEmax(1, /')(2j' + 1)[W(l,j, l',j'; ½, 1)] 2 

×F' [l:P*,rrP,,~drl e. (11) 

Here, the primes denote the final state, dE is the 
energy difference in Rydbergs between the initial 

and final states, the factor (2j '+  1) gives the mul- 
tiplicity of the final state, W is the Racah coefficient 
(Racah, 1942), F '  is the fractional occupancy of the 
final state and P is r times the Hartree radial wave 
function. The integral is the coordinate matrix 
element (n'l'[r[nl} and its square is proportional to 
the probability of spontaneous transition from the 
state nl to the state n'l'. 

When the relativistic wave functions described by 
Liberman, Waber & Cromer (1965) are used, the integral 
in equation (11) is replaced by 

I~[A*tjrA,,~,~,+(- 1)l-r+J-i'B*irBn,rj,]dr (12) 
0 

where A and B are, respectively, r times the major 
and minor components of the wave functions. 

Initial calculations of oscillator strengths 

The K oscillator strength for caesium was initially 
computed from the Hartree (H) wave functions, by 
using equations (10) and (11), in order to test the 
method and the computer program. The results 
essentially duplicated those of Wheeler & Bearden 
(1934). Spin and relativity corrections (Slater, 1960) 
were applied to the H eigenvalues. Differences between 
computed eigenvalues were used to obtain d E  for 
use in (11) rather than using experimental values of 
dE.  This was done for convenience and also because 
experimental values of A E are not available for all 
transitions of interest for all elements. 

More extensive oscillator strength calculations were 
then made for wolfram and uranium. The results for 
these heavy atoms did not agree well with HSnl's 
(1933) values and it was clear that  the H wave func- 
tions were inadequate for this purpose. Relativistic 
I-[artree-Dirac (HD) wave functions without exchange 
were available for wolfram and uranium (Cohen, 1960). 
The calculations were repeated with these wave 
functions and the results were considerably improved. 

As an example, values of the individual terms used 
to calculate the oscillator strengths of the four inner- 
most absorption edges of uranium are given in Table 1. 
The values from the H, the HD and the DS wave 
functions (DS wave functions were finally used for 
all atoms) are given so that  the effect of better 
approximations to the true wave functions can be 
seen. The energy differences in Table 1 are given in 
terms of wavelength. The Hartree AE values for 
many transitions differ appreciably from experimental 
values but it can be seen that  this error is minor as 
compared with the error in the transition probabilities 
computed from these wave functions. 

Table 2 lists, for wolfram and uranium, the oscillator 
strengths calculated from the three different wave 
functions. HSnl's (1933) values are also listed for 
comparison. 
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Osci l lator  s trengths  and d i spers ion  t e r m s  
for e l ement s  10 through  98 

At this stage of the investigation the DS wave 
functions became available for all the atoms. Oscillator 
strengths were computed for elements 10 through 98 
and these values are listed in Table 3. For elements 
10 through 17, four absorption edges were considered; 
for elements 18 through 28, seven edges; elements 30 
through 54, nine edges; elements 55 through 70, 
fourteen edges and for elements 71 through 98, 
sixteen edges were considered. Note that  for neon 
and argon, for which the total number of electrons 
in the atoms is included in the edges considered, 
the sum of the oscillator strengths equals the number 
of electrons; thus the sum rule is satisfied. 

The dispersion terms Af '  were then computed by 
using Parrat t  & Hempstead's  (1954) solution of 
equation (8) and summing over the various edges 
considered. For all atoms, n - - l l / 4  was used for the 
ls½ edge, n=7/3  for the 2s½ edge and for all other 
edges, n=5/2  was used. These are the same values 
of n used by Dauben & Templeton (1955). The 
dispersion terms Zlf" were computed from equation 
(9), again by summing over the various edges. Cal- 
culations were made for five different radiations in 
relatively common use. The results of these calcula- 
tions are given in Table 4. Values are given only for 
sin 0/2--0. Although the dispersion terms are func- 
tions of sin 0/A, the variation is so small that  it can 
be neglected in most crystal structure work. 

The values of o~, the frequencies of the various 
absorption edges used in equations (8) and (9), were 
for the most part taken from the tabulation of energy 
levels by SandstrSm (1957). Where SandstrSm does 
not list energy levels, computed eigenvalues were 
used for w~-. The asterisk after an element in Table 4 
indicates that  one or more computed eigenvalues 
were used in the calculations. Table 5 gives the 
computed eigenvalues that  were used. 

These dispersion terms are, in general, not much 
different from those calculated by Dauben & Temple- 
ton (1955), because the oscillator strengths used here 
are not much different from those previously deter- 
mined by other methods. However, the dispersion 
terms given here are probably as accurate as can be 
computed by the present theoretical methods, because 
reasonably accurate oscillator strengths have been 

used and because the contributions of the various 
absorption edges have been individually considered. 
More accurate wave functions, such as relativistic 
Hartree-Fock wave functions or those wave functions 
with correlation effects included, would probably 
not change the oscillator strengths very much. 

The main limitations on the accuracy of these 
calculations are the uncertainty in the value of n 
in equations (8) and (9) and, more fundamentally,  
the questionable validi ty of equation (6), in which 
the exponential factor n is introduced. Also, for 
incident frequencies near an absorption edge, the 
exact position of the edge becomes of primary im- 
portance. 

Sufficient information is given in Tables 3 and 5 
so that  one can compute the dispersion terms for other 
radiations or with other values of n for any atom. 

I wish to thank Dr James Young and Dr James 
Waber for many helpful discussions. 

References 

BETH:E, H. (1930). Handb. d. Phys. 24. Berlin: Springer. 
BOYD, R. G., LARSON, A.C. & WABER, J. T. (1963). 

To be published. 
COHEN, S. (1960). Phys. Rev. l l 8 ,  489. 
DAUBE~, C. H. & TEMPLETO~, D. H. (1955). Acts Cryst. 

8, 841. 
EISENLOHR, H. & MOLLER, G. L. J. (1954). Z. Phys. 136, 

491, 511. 
H S ~ ,  H. (1933). Z. Phys. 84, 1. 
International Tables for X-ray Crystallography (1962). 

Vol. III .  Birmingham: t(ynoch Press. 
JAM~S, R. W. (1948): The optical principles of the diffrac- 

tion of X-rays. Chap. 4. London: Bell. 
LATTER, R. (1955). Phys. Rev. 99, 510. 
LIBERMAN, D. T., WABER, J. T. & CROMER, D. T. (1965). 

Phys. Rev. In the press. 
PARRATT, L. G. & HEMPSTEAD, C. F. (1954). Phys. Rev. 

94, 1593. 
RAeA~, G. (1942). Phys. Rev. 62, 438. 
SANDSTRSM, A. E. (1957). Encyclopedia of Physics. 30, 

78. Berlin: Springer. 
SLATER, Z. C. (1951). Phys. Rev. 81, 385. 
SLATER, J. C. (1960). Quantum theory of atomic structure. 

Vol. II. New York: McGraw-Hill. 
TEMPLETON, D. H. (1955). Acta Cryst. 8, 842. 
WHEELER, J. A. & BEARDEN, J. A. (1934). Phys. Rev. 

46, 755. 


